Klasyfikacja sprzężeń zwrotnych

Klasyfikacja sprzężeń zwrotnych i ogólna struktura treningu

Analizując zaproponowany model neurorehabilitacji (zob. rozdział 5; Ryc.6) pod kątem ilościowym, można sklasyfikować różne rodzaje sygnałów docierających do Pacjenta ze względu na wartość opóźnienia w jednym z układów składowych pętli sprzężenia zwrotnego oraz ze względu na ilość tych pętli. Z punktu widzenia sprzężeń zwrotnych dotyczących Pacjenta, model NWU jest systemem trój-pętlowym. Zawiera dwie kategorie sprzężeń zwrotnych – sprzężenia wewnątrz systemu Pacjenta i na zewnątrz (percepcja zmysłowa, doświadczanie; komunikacja interpersonalna). Sygnałami pętli pierwszego poziomu nazwijmy sprzężenia zwrotne pomiędzy podsystemami organizmu Pacjenta, przykładowo między układem mięśniowym a receptorowym (sprzężenie b; Ryc.6). Pętla pierwszego poziomu charakteryzuje się najmniejszym opóźnieniem transmisji sygnałów między podsystemami.

Sygnały pętli drugiego poziomu są nośnikiem danych zmysłowych oraz komunikatów generowanych z relatywnie dużą częstotliwością przez efektory urządzeń BFDB. Różnica opóźnień między pętlą pierwszą a drugą jest stosunkowo niewielka. Pętla trzeciego poziomu umożliwia komunikację interpersonalną pomiędzy Pacjentem a Specjalistą, zarówno werbalną jak i niewerbalną. Opóźnienie tych sygnałów jest znacząco wyższe niż w przypadku sygnałów pętli pierwszej oraz drugiej i można je podzielić na sygnały z opóźnieniem rzędu godzin i dni/tygodni. Sygnały z opóźnieniem rzędu godzin, mogą zawierać informację dot. aktualnych statystyk treningowych wraz z komentarzem specjalisty. Następne powinny zawierać informację o statystykach i komentarze odnośnie kilku sesji treningowych na przestrzeni ostatnich dni/tygodni oraz w najdłuższej skali - informacje zwrotne zawierające wszystkie wyniki dotyczące jednej osoby lub grupy osób. Interfejsy nerwowe mogą oddziaływać na pętle pierwszego poziomu. Pętla drugiego poziomu pozwala na bieżącą optymalizację procesu uczenia się, wykorzystując technologie biofeedback. Pętla trzeciego poziomu umożliwia kontrolę postępów neurorehabilitacji i wpływa pozytywnie na motywację do utrzymania reżimu treningowego (raporty dzienne i miesięczne). Natomiast sygnały w skali najdłuższej, są źródłem informacji dla Specjalistów i Pacjentów odnośnie skuteczności prowadzonych interwencji, a więc wpływają na motywację do podjęcia decyzji o rozpoczęciu lub kontynuacji tego rodzaju terapii oraz dostarczają danych dla analiz naukowych.


Bibliografia

  1. Allen S.J., Watson J.J., Shoemark D.K. i in., GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacology & Therapeutics, 2013.
  2. Błaszczyk J., Modele cybernetyczne wybranych struktur i funkcji układu nerwowego, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa, 2009.
  3. Casadio M., Tamagnone I., Summa S., Sanguineti V., Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level, źródło: http://www.ncbi.nlm.nih.gov/pubmed/23986688 [dostęp: 1.06.2014].
  4. Cudo A., Zabielska E., Bałaj B., Wprowadzenie w zagadnienie interfejsów mózg-komputer, [w:] Studia z Psychologii w KUL, tom 17, s. 189-211, red. Gorbaniuk O., Kostrubiec-Wojtachnio B., Musiał D. i in.
  5. De Miranda M.A., Doggett M.A., Evans T.J., Medical Technology: Contexts and Contend in Science and Technology, źródło: http://people.wku.edu/mark.doggett/MedTechPrimer6.0.pdf [dostęp: 11.10.2016]
  6. Gajda J., Pomiary i identyfikacja w diagnostyce medycznej, [w:] Podstawy inżynierii Biomedycznej. Tom I, red. Tadeusiewicz R., Augustyniak P., Wydawnictwa AGH, Kraków, 2009.
  7. Garczyk A., Namysł J., Wstęp teoretyczny do treningu EMG Biofeedback i ETS w terapii zaburzeń neuromotorycznych po uszkodzeniach ośrodkowego układu nerwowego, [w:] Biofeedback Innowacje, red. Borkowski P., Wydawnictwo Akademii im. Jana Długosza w Częstochowie, Częstochowa, 2015.
  8. Gerven M., Farquhar J., Schaefer R. i in., The Brain-Computer Interfaces Cycle, Journal of Neural Engineering, Wrzesień, 2009.
  9. Giggins O., McCarthy Persson U., Caulfield B. (2013), Biofeedback in rehabilitation, Journal of NeuroEngineering and Rehabilitation, 10:60.
  10. Gwiazdowska B., Pawlicki G., Fizyku Medyczny - gdzie twoje miejsce? Historia i perspektywy fizyki medycznej w Polsce, Polish Journal of Medical Physics and Engineering, 2006.
  11. Hess G. (2009), Przekaźnictwo synaptyczne i plastyczność synaptyczna, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa.
  12. http://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains#t-1178711 [dostęp: 11.10.2016]
  13. Jaśkowski P. (2004), Zarys psychofizjologii, Wyższa Szkoła Finansów i Zarządzania, Warszawa.
  14. Kossut M., Synapsy i plastyczność mózgu, źródło: http://fundacjarozwoju-nauki.pl/res/Tom1/Nauka%20swiatowa%20i%20polska%5B1%5D. Rozdzial%2009.pdf [dostęp: 1.06.2014].
  15. Krakauer J.W. (2006), Motor learning: its relevance to stroke recovery and neurorehabilitation, „Current Opinion in Neurology”, nr 19, s. 84–90.
  16. Mazur M. (1999), Cybernetyka i charakter, Wyższa Szkoła Zarządzania i Przedsiębiorczości im.Bogdana Jańskiego, Warszawa.
  17. Merzenich M.M., Van Vleet T.M., Nahum M., Brain plasticity-based therapeutics, Frontiers In Human Neuroscience, 2014.
  18. Ojanguren E.I., Kostic M., Bejarano N.C., Keller T., Workshop on Transcutaneous Functional Electrical Stimulation, [w:] Emerging Therapies in Neurorehabilitation II, red. Pons J.L, Raya R., González J., Springer International Publishing, 2016.
  19. Purves D., Augustine G.J., Fitzpatrick D. i in., Neuroscience, 2nd edition, źródło: https://www.ncbi.nlm.nih.gov/books/NBK10799/ [dostęp: 11.10.2016]
  20. Pąchalska M. Rehabilitacja neuropsychologiczna. UMCS, Lublin, 2008.
  21. Razavi S., Nazem G., Mardani M., Neurotrophic factors and their effects in the treatment of multiple sclerosis, Advanced Biomedical Research, 2015.
  22. Tadeusiewicz R., Biocybernetyka, Wydawnictwa Zakładu Narodowego im. Ossolińskich i Polskiej Akademii Nauk, Wrocław, 1988.
  23. Tadeusiewicz R., Izworski A., Majewski J.: Biometria, Wydawnictwa AGH, Kraków, 1993.
  24. Tadeusiewicz R.: Neurocybernetyka Teoretyczna, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009.
  25. The Neurobiology of Neurofeedback, Wikipedia-Books, źródło: http://en.wikipedia.org/wiki/Book:The_Neurobiology_of_Neurofeedback [dostęp: 11.10.2016]
  26. Thomson M., Thomson L. (2012), Neurofeedback, Biomed Neurotechnologie, Wrocław.
  27. Wang W., Collinger J.L, Perez A.M. i in., Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity, źródło: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788507/ [dostęp: 11.10.2016]
  28. Wolpaw R.J, Winter Wolpaw E., Brain-Computer Interfaces: Principles and Practice, Oxford University Press, New York, 2012
  29. Zawada J.: Wybrane zagadnienia z podstaw metrologii, Wydawnictwo Politechniki Łódzkiej, Łódź, 2002.

Przypisy

  1. Sama proteza dłoni nie jest interfejsem nerwowym ani neuroprotezą. Neuroprotezą jest system zastępujący elementy układu czuciowego. Wg autorów neuroproteza oddziałująca mechanicznie na układ człowieka należy do interfejsów HMI/HCI, a ze względu na funkcję/cel do technologii wspomagających (AT).
  2. Zdaniem autorów, neurofeedback formalnie należy do biofeedbacku fizjologicznego. Zastosowane rozdzielenie neurofeedbacku od biofeedbacku ma wymiar czysto praktyczny, polegający na odróżnieniu sygnałów pochodzących z mózgu od innych sygnałów fizjologicznych.
  3. Podział zaproponowany przez Giggins i in. 2013 [9]
  4. Modele jakościowe sprowadzają się do opisu przepływu informacji za pomocą diagramów (schematów blokowych) i, w przeciwieństwie do modeli ilościowych, nie wykorzystują matematycznego opisu zjawisk, przez co są znacznie bardziej ogólne i nie pozwalają na precyzyjną analizę zachowania się systemu [2]. Modele jakościowe mają wartość przede wszystkim edukacyjną i w tym aspekcie są lepsze niz modele ilościowe ponieważ pozwalają na łatwiejsze zrozumienie procesów zachodzących w obrebie systemu który modelują.