Prawdziwa regeneracja i kompensacja

Prawdziwa regeneracja i kompensacja w neurorehabilitacji [15]

Prawdziwa regeneracja układu nerwowego w przeciwieństwie do kompensacji polega na odzyskaniu utraconej funkcji w podobnej lub takiej samej formie jak przed urazem lub chorobą. Przykładowo, regeneracja neuromotoryczna polega na uzyskaniu kontroli przez mózg lub rdzeń nad dokładnie tymi samymi mięśniami lub jednostkami ruchowymi jak przed wypadkiem lub chorobą. Z drugiej strony kompensacja polega na wytworzeniu alternatywnych mechanizmów sterowania innymi mięśniami w celu wykonania tego samego zadania. Niezależnie od tego czy mamy do czynienia z prawdziwą regeneracją czy kompensacją, aby je osiągnąć wymagany jest trening. Kluczem rehabilitacji neuromotorycznej i podstawą interwencji neurorehabilitacyjnych jest ruch powiązany z zadaniem i wysiłkiem woli - innymi słowy trening zorientowany na cel.


Bibliografia

  1. Allen S.J., Watson J.J., Shoemark D.K. i in., GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacology & Therapeutics, 2013.
  2. Błaszczyk J., Modele cybernetyczne wybranych struktur i funkcji układu nerwowego, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa, 2009.
  3. Casadio M., Tamagnone I., Summa S., Sanguineti V., Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level, źródło: http://www.ncbi.nlm.nih.gov/pubmed/23986688 [dostęp: 1.06.2014].
  4. Cudo A., Zabielska E., Bałaj B., Wprowadzenie w zagadnienie interfejsów mózg-komputer, [w:] Studia z Psychologii w KUL, tom 17, s. 189-211, red. Gorbaniuk O., Kostrubiec-Wojtachnio B., Musiał D. i in.
  5. De Miranda M.A., Doggett M.A., Evans T.J., Medical Technology: Contexts and Contend in Science and Technology, źródło: http://people.wku.edu/mark.doggett/MedTechPrimer6.0.pdf [dostęp: 11.10.2016]
  6. Gajda J., Pomiary i identyfikacja w diagnostyce medycznej, [w:] Podstawy inżynierii Biomedycznej. Tom I, red. Tadeusiewicz R., Augustyniak P., Wydawnictwa AGH, Kraków, 2009.
  7. Garczyk A., Namysł J., Wstęp teoretyczny do treningu EMG Biofeedback i ETS w terapii zaburzeń neuromotorycznych po uszkodzeniach ośrodkowego układu nerwowego, [w:] Biofeedback Innowacje, red. Borkowski P., Wydawnictwo Akademii im. Jana Długosza w Częstochowie, Częstochowa, 2015.
  8. Gerven M., Farquhar J., Schaefer R. i in., The Brain-Computer Interfaces Cycle, Journal of Neural Engineering, Wrzesień, 2009.
  9. Giggins O., McCarthy Persson U., Caulfield B. (2013), Biofeedback in rehabilitation, Journal of NeuroEngineering and Rehabilitation, 10:60.
  10. Gwiazdowska B., Pawlicki G., Fizyku Medyczny - gdzie twoje miejsce? Historia i perspektywy fizyki medycznej w Polsce, Polish Journal of Medical Physics and Engineering, 2006.
  11. Hess G. (2009), Przekaźnictwo synaptyczne i plastyczność synaptyczna, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa.
  12. http://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains#t-1178711 [dostęp: 11.10.2016]
  13. Jaśkowski P. (2004), Zarys psychofizjologii, Wyższa Szkoła Finansów i Zarządzania, Warszawa.
  14. Kossut M., Synapsy i plastyczność mózgu, źródło: http://fundacjarozwoju-nauki.pl/res/Tom1/Nauka%20swiatowa%20i%20polska%5B1%5D. Rozdzial%2009.pdf [dostęp: 1.06.2014].
  15. Krakauer J.W. (2006), Motor learning: its relevance to stroke recovery and neurorehabilitation, „Current Opinion in Neurology”, nr 19, s. 84–90.
  16. Mazur M. (1999), Cybernetyka i charakter, Wyższa Szkoła Zarządzania i Przedsiębiorczości im.Bogdana Jańskiego, Warszawa.
  17. Merzenich M.M., Van Vleet T.M., Nahum M., Brain plasticity-based therapeutics, Frontiers In Human Neuroscience, 2014.
  18. Ojanguren E.I., Kostic M., Bejarano N.C., Keller T., Workshop on Transcutaneous Functional Electrical Stimulation, [w:] Emerging Therapies in Neurorehabilitation II, red. Pons J.L, Raya R., González J., Springer International Publishing, 2016.
  19. Purves D., Augustine G.J., Fitzpatrick D. i in., Neuroscience, 2nd edition, źródło: https://www.ncbi.nlm.nih.gov/books/NBK10799/ [dostęp: 11.10.2016]
  20. Pąchalska M. Rehabilitacja neuropsychologiczna. UMCS, Lublin, 2008.
  21. Razavi S., Nazem G., Mardani M., Neurotrophic factors and their effects in the treatment of multiple sclerosis, Advanced Biomedical Research, 2015.
  22. Tadeusiewicz R., Biocybernetyka, Wydawnictwa Zakładu Narodowego im. Ossolińskich i Polskiej Akademii Nauk, Wrocław, 1988.
  23. Tadeusiewicz R., Izworski A., Majewski J.: Biometria, Wydawnictwa AGH, Kraków, 1993.
  24. Tadeusiewicz R.: Neurocybernetyka Teoretyczna, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009.
  25. The Neurobiology of Neurofeedback, Wikipedia-Books, źródło: http://en.wikipedia.org/wiki/Book:The_Neurobiology_of_Neurofeedback [dostęp: 11.10.2016]
  26. Thomson M., Thomson L. (2012), Neurofeedback, Biomed Neurotechnologie, Wrocław.
  27. Wang W., Collinger J.L, Perez A.M. i in., Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity, źródło: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788507/ [dostęp: 11.10.2016]
  28. Wolpaw R.J, Winter Wolpaw E., Brain-Computer Interfaces: Principles and Practice, Oxford University Press, New York, 2012
  29. Zawada J.: Wybrane zagadnienia z podstaw metrologii, Wydawnictwo Politechniki Łódzkiej, Łódź, 2002.

Przypisy

  1. Sama proteza dłoni nie jest interfejsem nerwowym ani neuroprotezą. Neuroprotezą jest system zastępujący elementy układu czuciowego. Wg autorów neuroproteza oddziałująca mechanicznie na układ człowieka należy do interfejsów HMI/HCI, a ze względu na funkcję/cel do technologii wspomagających (AT).
  2. Zdaniem autorów, neurofeedback formalnie należy do biofeedbacku fizjologicznego. Zastosowane rozdzielenie neurofeedbacku od biofeedbacku ma wymiar czysto praktyczny, polegający na odróżnieniu sygnałów pochodzących z mózgu od innych sygnałów fizjologicznych.
  3. Podział zaproponowany przez Giggins i in. 2013 [9]
  4. Modele jakościowe sprowadzają się do opisu przepływu informacji za pomocą diagramów (schematów blokowych) i, w przeciwieństwie do modeli ilościowych, nie wykorzystują matematycznego opisu zjawisk, przez co są znacznie bardziej ogólne i nie pozwalają na precyzyjną analizę zachowania się systemu [2]. Modele jakościowe mają wartość przede wszystkim edukacyjną i w tym aspekcie są lepsze niz modele ilościowe ponieważ pozwalają na łatwiejsze zrozumienie procesów zachodzących w obrebie systemu który modelują.