Optymalizacja i normalizacja

Optymalizacja i normalizacja w neurorehabilitacji

Mediatorem wszystkich procesów uczenia się zarówno ruchowych jak i poznawczych jest proces neuroplastyczności. Regeneracja ośrodkowego układu nerwowego na drodze rehabilitacji, czyli neurorehabilitacja również odbywa się poprzez uczenie się. Można wyróżnić dwa cele procesów uczenia: (1) optymalizacja polega na polepszeniu zdolności poznawczych lub ruchowych, natomiast (2) normalizacja polega na doprowadzeniu zdolności ruchowych lub poznawczych do normy. Procesy optymalizacji i normalizacji nie różnią się od siebie pod względem molekularnych mechanizmów neurobiologicznych, ponieważ dotyczą tego samego procesu - neuroplastyczności (wyłączając proces spontanicznej plastyczności pouszkodzeniowej, który nie jest indukowany świadomą aktywnością człowieka). Natomiast wartości parametrów terapeutycznych i procedury treningowe muszą się różnić zarówno między Pacjentami zdrowymi i chorymi, jak i Pacjentami w tej samej grupie. Odpowiednie podejście terapeutyczne musi być adekwatne do bieżącego stanu Pacjenta niezależnie od celu interwencji (normalizacji lub optymalizacji).


Bibliografia

  1. Allen S.J., Watson J.J., Shoemark D.K. i in., GDNF, NGF and BDNF as therapeutic options for neurodegeneration, Pharmacology & Therapeutics, 2013.
  2. Błaszczyk J., Modele cybernetyczne wybranych struktur i funkcji układu nerwowego, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa, 2009.
  3. Casadio M., Tamagnone I., Summa S., Sanguineti V., Neuromotor recovery from stroke: computational models at central, functional, and muscle synergy level, źródło: http://www.ncbi.nlm.nih.gov/pubmed/23986688 [dostęp: 1.06.2014].
  4. Cudo A., Zabielska E., Bałaj B., Wprowadzenie w zagadnienie interfejsów mózg-komputer, [w:] Studia z Psychologii w KUL, tom 17, s. 189-211, red. Gorbaniuk O., Kostrubiec-Wojtachnio B., Musiał D. i in.
  5. De Miranda M.A., Doggett M.A., Evans T.J., Medical Technology: Contexts and Contend in Science and Technology, źródło: http://people.wku.edu/mark.doggett/MedTechPrimer6.0.pdf [dostęp: 11.10.2016]
  6. Gajda J., Pomiary i identyfikacja w diagnostyce medycznej, [w:] Podstawy inżynierii Biomedycznej. Tom I, red. Tadeusiewicz R., Augustyniak P., Wydawnictwa AGH, Kraków, 2009.
  7. Garczyk A., Namysł J., Wstęp teoretyczny do treningu EMG Biofeedback i ETS w terapii zaburzeń neuromotorycznych po uszkodzeniach ośrodkowego układu nerwowego, [w:] Biofeedback Innowacje, red. Borkowski P., Wydawnictwo Akademii im. Jana Długosza w Częstochowie, Częstochowa, 2015.
  8. Gerven M., Farquhar J., Schaefer R. i in., The Brain-Computer Interfaces Cycle, Journal of Neural Engineering, Wrzesień, 2009.
  9. Giggins O., McCarthy Persson U., Caulfield B. (2013), Biofeedback in rehabilitation, Journal of NeuroEngineering and Rehabilitation, 10:60.
  10. Gwiazdowska B., Pawlicki G., Fizyku Medyczny - gdzie twoje miejsce? Historia i perspektywy fizyki medycznej w Polsce, Polish Journal of Medical Physics and Engineering, 2006.
  11. Hess G. (2009), Przekaźnictwo synaptyczne i plastyczność synaptyczna, [w:] Neurocybernetyka Teoretyczna, red. R. Tadeusiewicz, Wyd. Uniwersytetu Warszawskiego, Warszawa.
  12. http://www.ted.com/talks/daniel_wolpert_the_real_reason_for_brains#t-1178711 [dostęp: 11.10.2016]
  13. Jaśkowski P. (2004), Zarys psychofizjologii, Wyższa Szkoła Finansów i Zarządzania, Warszawa.
  14. Kossut M., Synapsy i plastyczność mózgu, źródło: http://fundacjarozwoju-nauki.pl/res/Tom1/Nauka%20swiatowa%20i%20polska%5B1%5D. Rozdzial%2009.pdf [dostęp: 1.06.2014].
  15. Krakauer J.W. (2006), Motor learning: its relevance to stroke recovery and neurorehabilitation, „Current Opinion in Neurology”, nr 19, s. 84–90.
  16. Mazur M. (1999), Cybernetyka i charakter, Wyższa Szkoła Zarządzania i Przedsiębiorczości im.Bogdana Jańskiego, Warszawa.
  17. Merzenich M.M., Van Vleet T.M., Nahum M., Brain plasticity-based therapeutics, Frontiers In Human Neuroscience, 2014.
  18. Ojanguren E.I., Kostic M., Bejarano N.C., Keller T., Workshop on Transcutaneous Functional Electrical Stimulation, [w:] Emerging Therapies in Neurorehabilitation II, red. Pons J.L, Raya R., González J., Springer International Publishing, 2016.
  19. Purves D., Augustine G.J., Fitzpatrick D. i in., Neuroscience, 2nd edition, źródło: https://www.ncbi.nlm.nih.gov/books/NBK10799/ [dostęp: 11.10.2016]
  20. Pąchalska M. Rehabilitacja neuropsychologiczna. UMCS, Lublin, 2008.
  21. Razavi S., Nazem G., Mardani M., Neurotrophic factors and their effects in the treatment of multiple sclerosis, Advanced Biomedical Research, 2015.
  22. Tadeusiewicz R., Biocybernetyka, Wydawnictwa Zakładu Narodowego im. Ossolińskich i Polskiej Akademii Nauk, Wrocław, 1988.
  23. Tadeusiewicz R., Izworski A., Majewski J.: Biometria, Wydawnictwa AGH, Kraków, 1993.
  24. Tadeusiewicz R.: Neurocybernetyka Teoretyczna, Wydawnictwa Uniwersytetu Warszawskiego, Warszawa 2009.
  25. The Neurobiology of Neurofeedback, Wikipedia-Books, źródło: http://en.wikipedia.org/wiki/Book:The_Neurobiology_of_Neurofeedback [dostęp: 11.10.2016]
  26. Thomson M., Thomson L. (2012), Neurofeedback, Biomed Neurotechnologie, Wrocław.
  27. Wang W., Collinger J.L, Perez A.M. i in., Neural Interface Technology for Rehabilitation: Exploiting and Promoting Neuroplasticity, źródło: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2788507/ [dostęp: 11.10.2016]
  28. Wolpaw R.J, Winter Wolpaw E., Brain-Computer Interfaces: Principles and Practice, Oxford University Press, New York, 2012
  29. Zawada J.: Wybrane zagadnienia z podstaw metrologii, Wydawnictwo Politechniki Łódzkiej, Łódź, 2002.

Przypisy

  1. Sama proteza dłoni nie jest interfejsem nerwowym ani neuroprotezą. Neuroprotezą jest system zastępujący elementy układu czuciowego. Wg autorów neuroproteza oddziałująca mechanicznie na układ człowieka należy do interfejsów HMI/HCI, a ze względu na funkcję/cel do technologii wspomagających (AT).
  2. Zdaniem autorów, neurofeedback formalnie należy do biofeedbacku fizjologicznego. Zastosowane rozdzielenie neurofeedbacku od biofeedbacku ma wymiar czysto praktyczny, polegający na odróżnieniu sygnałów pochodzących z mózgu od innych sygnałów fizjologicznych.
  3. Podział zaproponowany przez Giggins i in. 2013 [9]
  4. Modele jakościowe sprowadzają się do opisu przepływu informacji za pomocą diagramów (schematów blokowych) i, w przeciwieństwie do modeli ilościowych, nie wykorzystują matematycznego opisu zjawisk, przez co są znacznie bardziej ogólne i nie pozwalają na precyzyjną analizę zachowania się systemu [2]. Modele jakościowe mają wartość przede wszystkim edukacyjną i w tym aspekcie są lepsze niz modele ilościowe ponieważ pozwalają na łatwiejsze zrozumienie procesów zachodzących w obrebie systemu który modelują.